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Spatiotemporal dynamics of optical molecular motors
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The spatiotemporal dynamics of optical molecular motors is simulated on the basis of a spatially resolved
model. A spatially dependent Fokker-Planck model for the molecular motors is linked with Maxwell’s wave
equation describing the external excitation via a spatially inhomogeneous light field. Simulations show that
strong diffusion of the embedding fluent leads to increased motor dynamics while in inhomogeneous en-
sembles motor clustering may occur. Spatially inhomogeneous optical excitation may provide a means of
movement control of the molecular motors.
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I. INTRODUCTION

Recent investigations in the biosciences that involve, e
single-molecule nanomanipulation of biomolecules@1#, have
revealed a large variety of fascinating effects. One of th
phenomena is the existence of ‘‘microscopic engines’
highly specialized functional units~macromolecules! that
can consume energy to induce motion and to generate fo
Depending on their specific dynamics and function these
lecular motors or motor proteins may be classified as lin
and rotary motors@2–4#. Supplying energy to linear molecu
lar motors produces movement along a filamentous struct
Examples for linear molecular motors are the movemen
myosin along an actin filament@5,6#, kinesin@7# and dynein
@8# along a microtubule, and RNA polymerase along DN
@9#. Typically the filaments are formed by a polymerizatio
process from identical~asymmetric! monomers leading to a
polar regular and periodic structure. The motor molecule
attach to a protein filament which then serves as a track
its motion. The interaction of the motors with the filame
can be described by potentials that reflect the periodic st
ture along the filament surface. In the presence of an en
source~e.g., adenosine triphosphate, ATP! the motor may
then move in a direction defined by the polarity of the tra
The complex dynamics of molecular motors therefore cov
many length and time scales. A motor that is bound to
filament can—after consumption of a fuel molecule—mo
in steps of the order of several nanometers. Making abo
hundred such steps in its bound state the motor typic
covers a walking distance that is of the order of micromete
On larger length scales the motor undergoes random w
which consist of alternating sequences of bound and
bound motor states, i.e., of directed walks along the filame
and nondirected diffusion in the sourrounding medium~e.g.,
an aequeous solution!.

Various physical models@10–26# have been suggested
describe this fascinating generation of force and motion
molecular motors. These models may be grouped in cont
ous @12,27,28# and discrete@29,30# models. Continuous
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model descriptions are based on a numerical integration
set of Fokker-Planck equations@12,31#. There, the nonequi-
librium rectifying processes that can induce macrosco
motion of a particle can be introduced as fluctuating forc
fluctuating potentials, and particle fluctuations between sta
@12#. The transition rates for particles between the respec
energies are thereby integrated using a detailed balance
proach@32#. Discrete theories, on the other hand, descr
the motors as rigid particles. They are often analytically so
able but the introduction of an external force is difficult
handle @32#. The compatibility of discrete and continuou
models has been investigated in Refs.@32,33#. Single-
particle Brownian motor models@11,34# and coupled-particle
models@35–38# were used to study noise-induced motion
well as the interaction of elastically coupled particles. T
influence of collective effects has been considered and a
lyzed in various descriptions@12,20,37,39–41#. Furthermore,
the interplay of the biochemical cycle and the conform
tional state could be included in theoretical studies@30#. The
different conformations have been simulated by introduc
internal states for the motors@30,42#. We note that one
thereby typically introduces an average density of partic
on the expense of disregarding the explicit influence of a
dependence on the spatial extension of the system.

Next to the mechanicochemical coupling within a mot
ensemble it is, in particular, the interaction with an exter
energy source~e.g., electromagnetic waves! that plays an
important role in the function of molecular motors. In fac
many experimental techniques~fluorescence microscopy, op
tical tweezers, etc.! directly exploit the fact that light exerts
force on matter. It is thus of fundamental interest to analy
the fundamental interactions between light and molecu
So far, only few theoretical studies have been establis
that describe the interaction of light with living matter: Sca
tering functions@43# have been derived to simulate the inte
action between spatially inhomogeneous biological me
and light. The spectral method@44# uses a Fourier expansio
of the field amplitude. This method has successfully be
applied to describe the optical properties of tissues and i
vidual cells. The scattering of light by blood cells as well
the resulting near and far fields have been simulated utiliz
the T-matrix theory@45#. In the discrete-dipole approxima
tion @46#, a particle is divided into subvolumes that are a
©2003 The American Physical Society14-1
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sumed to behave as dipoles. As an alternative to the w
description of light, the Boltzmann transport equation or
time-dependent standard diffusion equation@47–49# has
been used. The propagation and scattering of light in tis
could be analyzed at the cellular level by approximating
cells with monosized homogeneous spheres@50#. In contrast,
the finite-difference time-domain approach@51# has the ad-
vantage of allowing the consideration of inhomogeneous
jects of arbitrary shape and index distribution. This meth
which is based on a direct integration of Maxwell’s equatio
has been applied to cellular-scattering problems@52,53#. The
total size of the model system, however, is limited by co
putational considerations since the grid spacing must b
fraction of the wavelength to guarantee convergence@54#.

Next to the investigation and interpretation of biomo
ecules, there is a growing number of artifically designed m
lecular motors@55–57# suggesting that the physics of the
systems is relevant for microtechnical and nanotechnical
vices. First theoretical approaches@58–61# to synthetic sys-
tems motors~e.g., molecular propellers, brakes, switch
shuttles! include an external chemical, electrochemical,
photochemical stimulus that induces a switching proces
movement within the molecule or triggers a change in sh
or assembly of molecules.

The work we present here was inspired by recent exp
mental demonstrations of a molecular motor system
could be controlled by optical illumination@62#. It could be
shown that light-induced conformational changes allow
via an optomechanical cycle the construction of chiral op
cal ~chiroptical! molecular switches@63# and the first light-
driven molecular motor@62#. A second energy source—i
addition to the difference of the chemical potentials of fu
and products in the ATP hydrolysis—may thus be rep
sented by an applied light field that changes the inter
states and/or transition rates, leading to a ‘‘light-driven’’ m
tor system. The spatiotemporal dynamics of this motor s
tem will then be determined by the spatially varying ligh
matter coupling, dynamic excitation and relaxation of t
particles, as well as a characteristic~nonlinear! response of
the particles to the light field. Depending on a particu
excitation configuration one might even think of a spat
optical grating@64# designed by e.g., crossedbeams for
selective excitation or guiding of a molecular ensemble.

Up to now, many spatiotemporal effects that are involv
in real molecular motor systems still are not fully unde
stood: How strongly does the local state of a molecular m
tor ~characterized, e.g., by its individual diffusion process
internal energetic state! influence the dynamics of its mo
lecular neighbors? And to what extent do spatial fluctuati
in molecular properties as well as spatial diffusion a
transport—resulting in characteristic spatial distributions a
molecular densities of detached and attached motors—a
the function and properties of a motor system?

To lay the basis for an analysis of this spatiotempo
dynamics occurring on a mesoscopic scale, we propos
extend the existing model descriptions with respect to a
rect consideration of the spatial and temporal degrees of f
dom. We consider the spatiotemporal dynamics of an
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semble of molecular motors interacting with filaments in
spatially inhomogeneous biological medium. Aiming at d
scribing linear biological motor proteins that move along
linear filament, we consider a model system of process
motor molecules characterized by a sawtooth potential
the ground and the excited state, respectively. The dynam
of these motors is then determined by the currents resul
from the space-dependent potentials, by a spatially vary
excitation of motors from the lower to the upper state~which
we assume to occur via spatially inhomogeneous exte
illumination! as well as by spatiotemporal fluctuations. B
direct numerical integration of the partial differential equ
tions of motion the model allows a very natural and straig
forward representation of spatial inhomogenieties in the
semble of molecular motors as well as the spatiotempor
varying nonequilibrium dynamics and interaction of bou
~i.e., attached to, e.g., a filament! and free~i.e., diffusive
motion in surrounding fluent! molecular motors.

II. THEORETICAL DESCRIPTION

In the light of the optically excited molecular motor re
cently demonstrated in Ref.@62# we here construct a mode
system consisting of parallel filaments and linear motors s
ject to illumination with a coherent light field. In essence, t
model combines equations of motion for the particles with
spatially dependent set of parameters describing the biol
cal medium, its interaction with the environment and, in p
ticular, spatiotemporal fluctuations. A characteristic para
eter set thus includes the density and distribution of
particles in the medium, molecular properties~e.g., potential
shapes, diffusion constants!, spatially dependent optica
properties~e.g., sensitivity to illumination, transition rates!,
and the interactions between the particles~e.g., between at-
tached motors and their neighbors on the filament or betw
particles of different type! or between molecular motors an
their environment~e.g., a fluent! with characteristic interac-
tion times. The resulting equations that model the spatiote
poral dynamics of the optical molecular motors thus descr
spatially varying particle densities and the dynamic coupl
of those to the light-field, particle-to-particle scattering, sp
tially varying particle properties, as well as the interacti
with the embedding material. The spatially dependent li
field dynamics is simulated on the basis of Maxwell’s wa
equation and includes diffraction, the spatiotemporal c
pling to the medium, as well as spatiotemporal light-fie
fluctuations.

With all generality in the theory, we will later focus on
specific model system that consists of molecular mot
moving along parallel filaments~width w525 nm, filament
separations5100 nm) in an embedding medium@see Fig.
1~a!#. Motors may either be attached to the filaments or mo
freely in the surrounding fluent. Our spatial resolutio
thereby allows, in principle, an inclusion of spatially varyin
geometrical parameters with fluctuations]w and ]s. In the
example we assume the filaments to be fixed but the in
sion of a diffusive motion of the filaments is straightforwar
In order to keep the description simple and to focus on
neric properties, we do not include microscopic structu
4-2
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SPATIOTEMPORAL DYNAMICS OF OPTICAL . . . PHYSICAL REVIEW E 68, 021914 ~2003!
details of the biological motor proteins but consider the b
chemical cycle and the conformational state to be inter
pendent@11,28#. This separation of time scales@12# is justi-
fied by the fact that the various microscopic degre
characterizing the motor proteins relax on time scales sho
than the typical relevant time scales for the chemical cyc

In our theory the motor system is represented by part
densities which can be in one ofN internal states~represent-
ing, e.g., the steps of the chemical cycle! @10–12,14,28#, for
example, a ground state and an excited state~see Fig. 1!. We
use a spatially dependent Fokker-Planck description and
troduce distribution functions for the probability to find
motor of a particle ensemble at timet in statei at positionr
in the two-dimensional space representing the filament
semble. For each statei, the particle is subject to a pola
periodic pontentialVi(r ,t) of average periodL. The motors
dynamically detach from and attach to the filaments. T
transition ratesk j i (r ) are spatially dependent; they are infl
enced by, e.g., ATP concentration@65# or external illumina-
tion. The detachment will be represented with spatially a
temporally dependent detachment rates that may depen
the spatially varying potential shape as well as on a spati
dependent external force. The distribution of attached mo
~in state i ) is then given by the following evolution equa
tions:

FIG. 1. ~a! Scheme of the molecular model system: The s
tially distributed motors are attached to the filament~here, parallel
to each other! or move freely in the surrounding medium~e.g.,
fluent!. The arrows indicate the diffusive motion in the environme
~line! and the interaction between attached and free motors as
as between motors from neighboring filaments via dynamic deta
ment and attachment.~b! The states of the motors~here, two! are
simulated with~shifted! potential shapesVi with a characteristic
periodicity L and a fluctuation]V. According to the potential the
drift currents drive the motors into the respective potential m
mum. From there the motor molecules may be excited in a part
lar spatiospectral regime into the excited level where they conti
their downhill movement to the next potential minimum of the co
responding high-energy state.
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]t
pi~r ,t !52“ j i~r ,t !1G` i~r !p`~r ,t !1(

j Þ i
k j i ~r !pj~r ,t !

2G i`~r !pi~r ,t !2(
j Þ i

k i j ~r ,t !pi~r ,t !, ~1!

with current j i , transition rates for ‘‘in scattering’’@k j i (r )#
and ‘‘out scattering’’@k i j (r )# and attachment as well as de
tachment ratesG` i(r ) and G i` , respectively. Thereby, the
rates may have any time and space dependence. We thu
not have to restrict ourselves to, e.g., ad-shaped detachmen
rate near the maxima of the potential: the full spatial a
temporal dependence can be taken into account via the
tial and temporal integrations. The currentsj i representing
the source terms in Eq.~1! result from diffusion, interaction
with the filament, and the action of a possible external fo
F. They are defined by

j i~r ,t !52m i~r !$kbT“pi~r ,t !1@“Vi~r ,t !2F~r ,t !#pi~r ,t !%

Vi~r ,t !5(
m

v i
msin~vmt1fm!1dVi~r ,t !. ~2!

In Eq. ~2! m i is the particle mobility. In most model descrip
tions the potential shapesVi(r ,t) are considered as ‘‘ideal,’
i.e., with constant periodicity and identical energetic sh
between the potential energy of the sublevels characteri
the motor ensemble. Furthermore, the transition and det
ment rates usually are localized in a region of particular s
and minimum values elsewhere. We note that we keep
spatiotemporally resolved description as general as poss
here and explicitly include a spatial dependence of the
tential shape and the transition rates. In our simulatio
however, we later will approximate the potentials using
sum of sin functions with spatially dependent amplitud
The spatial variation is included via a space-dependent fl
tuation termdVi(r ,t) that we simulate with a Gaussian di
tribution. We further would like to note that in principle an
arbitrary potential shape~not necessarily a sawtooth shap!
and any perturbation~arbitrary function of space and time
e.g., specific local excitations! can be included and analyze
with respect to its influence on the motor dynamics. For s
plicity, however, we will consider in the following a two
level system, i.e., assume that the motors may be either
lower, ‘‘ground,’’ or ‘‘excited’’ level.

A motor, which initally lies in a potential minimum of the
lower state, gets excited into the higher state, where it
fuses. It then undergoes nondirected diffusive motion in
surrounding aqueous solution until it encounters the sam
another filament to which it can rebind and continue its
rected walk. The diffusion of free motors is described by

]

]t
p`~r ,t !52“ j `1(

i
G i`~r !pi~r ,t !2(

i
G` i~r !pi~r ,t !,

j `52m`~r !@kbT“p`~r ,t !2F~r ,t !p`~r ,t !#. ~3!

Next to the force induced by the conformational chang
additional forces induced by light illumination may act o
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E. GEHRIG AND O. HESS PHYSICAL REVIEW E68, 021914 ~2003!
our model system. They can be included via two ways: Fi
a light field may shift the potential of a particular molecul
state. This would lead to changes in the spatially depend
potential. Second, light may alter the transition rates betw
the various sublevels of the system. In principle, these tr
sition rates can be derived from standard chemical kine
given by, e.g., the ADP/ATP reaction. More generally t
transition rates may by perturbed by any means, for exam
in the case of artificially constructed systems by pho
fluxes, which may induce state changes provided an ap
priate frequency range were chosen. Depending on ener
bandwidth and intensity the excitation may induce a trans
of motors that have accumulated in the potential mini
characterizing a molecular state into an excited state
higher energy. In combination with the resulting molecu
‘‘relaxation’’ of motors from the potential minimum of the
higher state into the low-energy state, this may then
depending on the characteristic time scales for detachm
and attachment—increase the forward movement of the
tors ~see Fig. 2!.

External excitation via a light field can be considered w
wave equations describing the spatially dependent illum
tion and light propagation. The dynamics of the light fiel
can be calculated within the frame of Maxwell’s wave equ
tion:

nl

c

]

]t
E~r ,t !5 iD p¹T

2E~r ,t !2
1

2Ev
dva~r ,t !E~v!

1Ein ject~r ,t !,

a~r ,t !52(
i , j

@k i j ~r ,t !pj~r ,t !2k j i ~r ,t !pi~r ,t !#,

k i j ~r ,t !5k0~r ,t !
g2

~v i j 2v0!21g2
E~v i j !,

FIG. 2. Snapshots@~a,c!, 5 ms, ~b,d!, 40 ms!# of the spatial
motor distribution with a diffusion constant in the fluent of~a,b!
D f

f ree55D f
attachedand ~c,d! D f

f ree550D f
attached.
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The wave equation for the description of the light-field d
namics explicitly takes into account the propagation and
fraction (Dp) of the coherent light signal in the medium a
well as the dynamic interaction via a spatiospectral coupl
to the medium@including the modification of the signal in
duced by the medium,a(r ,t)]. We thereby assume a
frequency-dependent light-induced variation of the intrale
transition ratesk i j (r ,t) which we approximate with a
Lorentzian line shape function. In our model system
chose the dependence of these rates on the molecular p
tial such that they complement the movement of the mot
induced by the drift currents. According to their potent
dependence the drift currents lead to an accumulation of
tors in the potential minima. We consequently chose the tr
sition rate from the ground to the excited level to be ma
mum in the potential mimima of the potential of the low
energy~ground! state of the motor. The transition rate fro
the excited level to the ground level is set to the minimum
the potential of the excited state.k0(r ,t) represents the un
perturbed transition rates as given by the chemomechan
cycle of the system@65#. All parameters and properties ma
be space- and time-dependent allowing for a self-consis
inclusion of spatiotemporal fluctuations.

The spatiotemporal dynamics of the motor molecules
characterized by various regimes: First, the motors m
along the filament with a typical walking distance of a fe
microns@66–68#. On larger time scales, the motors then u
dergo random walks which consist of alternating sequen
of bound and unbound motor states, i.e., of directed wa
along the filaments and nondirected diffusion in the enviro
ment ~e.g., an aqueous solution!. The character of the di-
rected and diffusive motion, the progressivity and efficien
of the operation of molecular motors thereby depend
many parameters. There are, in particular, geometrical
rameters~distribution of filament and motors!, motor proper-
ties ~potential shapes, diffusion times, tranistion rates!, exci-
tation conditions, and spatiotemporal fluctuations.

The explicit consideration of the various spatial and te
poral degrees of freedom allows the simulation of spatiote
poral diffusion, the dynamic coupling between motors a
environment and between motors of neighboring filamen
as well as the coupling between the motor ensemble an
external excitation process. In particular, the space-
time-dependent equations allow the self-consistent inclus
of spatially varying molecular properties and inhomogenio
motor distributions. In the following we discuss numeric
results that illustrate the model.

III. SPATIOTEMPORAL DYNAMICS

As an example we simulate the dynamics of the mot
filament system shown in Fig. 1~a!. The molecular motors
move along filaments~with potential period 8 nm! which in
our model system are assumed to be arranged in parall
each other in the embedding medium. Motors may either
attached to the filaments or move freely in the surround
4-4
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SPATIOTEMPORAL DYNAMICS OF OPTICAL . . . PHYSICAL REVIEW E 68, 021914 ~2003!
fluent. The bound motors may be either in the ground or
excited state. Thereby we assume the sawtooth potenti
the excited level to be shifted by half a period length w
respect to the ground state. We will discuss the follow
three scenarios:~a! ‘‘diffusive motors’’: influence of diffu-
sion on motor dynamics,~b! ‘‘fluctuating motors’’: motor
ensembles with spatially varying motor molecules,~c! ‘‘ex-
cited motors’’: influence of a space-dependent optical ex
tation on motor dynamics. Thereby, typical transition ra
are taken from the literature@28,32,42,65,69#.

A. Diffusive molecular motors: The influence of diffusion
on the motor dynamics

The diffusion of motor molecules in a filament system
determined by both, the diffusion coefficient of the moto
that are attached to a filament and the diffusion coeffici
characterizing the environment. In addition to this direct d
pendence on parameters, an indirect influence is given by
density of molecular motors and the geometry of the sys
under consideration~e.g., width and lateral distance of th
filaments!. For a normal aqueous solution, the unbound d
fusion coefficient is much larger than the bound state dif
sion coefficients. For example, the diffusion coefficient
kinesin in the bound state is of the order of 1023, . . . ,5
31022 mm2 s21 @42#. The diffusion coefficient in the sur
rounding medium is given by the classical Stokes-Einst
relation @42# and depends on the thermal energy, on the
namic viscosity of the solution, and on the effective hyd
dynamic radius of the motor particle. Typical values a
2.4–24mm2 s21. The transition rates between upper a
lower levels of the motors are chosen sufficiently high
induce a transition between the two motor states. The mo
that have—due to the drift current—accumulated near
potential minima of, e.g., the ground state can thus be tra
fered to the excited state where they continue their propa
tion. The parameterG of the transition rates is chosen su
that the optical excitation occurring in direction of the pote
tial variation has a spatial extension of'0.253L ~whereL is
the potential period!. The attachment and detachment ra
were constant.

Figure 2 shows snapshots of a model motor system wi
diffusion constant of 131023 nm2 s21 of bound~i.e., mov-
ing along the filaments! motors. The diffusion constant of th
free ~i.e., moving in the embedding fluent! motors was set to
531023 mm2 s21 @Figs. 2~a,b!# and 5031023 mm2 s21

@Figs. 2~c,d!#, respectively. The snapshots were taken afte
ms ~a,c! and 40 ms~b,d!. They show the sum of attache
motors in ground and excited levels. In the start of the c
culation the motors were assumed to be homogeneously
tributed in a circular area in the center of the filament syste
with equal density of bound and free motors. Immediat
after the start of the calculation the periodic potential lead
via the drift currents@Eq. ~2!#—to an accumulation of the
motors in the respective potential minima@Figs. 2~a! and
2~c!#. With increasing time the dynamic detachment and
attachment of the motors in combination with motor diff
sion leads to a characteristic irregular molecular distribut
@Fig. 2~d!#.
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The snapshots show that the value of the diffusion in
fluent strongly affects the spatiotemporal dynamics of
system. If the diffusion constant of the free motors is sm
the motor molecules move only over small distances~com-
pared to the period length of the potential! in the embedding
medium until they reattach to the filaments. As a con
quence, the motors may then after reattachment find th
selves in the same potential period. If, on the other hand,
embedding fluent is characterized by a higher diffusive c
stant, the free motors can pass a longer distance~compared
to the period length of the potential! until they are bound to
a filament. As a consequence, a significant fraction of
‘‘free’’ motors then falls into the next potential period whe
they are again transported by the currents towards the co
sponding potential minimum. As can be seen in Fig. 2~d!, an
increased diffusive motion in the environment may not on
increase the motor velocity in the ‘‘preferred’’~e.g., from
bottom to top! propagation direction but also induce—via th
coupling between bound and free motors—a backward m
tion and thus lead to a spatial broadening of the motor d
tribution. However, applying an external forceF to the sys-
tem the backward motion may be suppressed and
effectivity of the overall ratched effect induced by the asy
metric periodic potential may be increased. In addition to
longitudinal dynamics~i.e., along the filaments!, the in-
creased diffusion of free motors leads—via the dynamic
tachment and detachment to a coupling of neighboring fi
ments and consequently to a spatiotemporal transfer of m
molecules into regions left and right from the initial mot
distribution.

B. Fluctuating motors: Spatially inhomogeneous
motor ensembles

Next, we consider a motor ensemble with spatially va
ing molecular properties. In the model such spatial inhom
geneities are taken into account via space-dependent pa
eters of the height and periodicity of the potential (dVi). We
assume a Gaussian distribution~here, with a variance of 8%!.
We would like to note that, in principle, every parameter c
be varied and analyzed with respect to its influence on
spatiotemporal dynamics individually.

The influence of the parameter fluctuations on the dyna
ics of the system becomes directly apparent in the snaps
of the motor distribution. In the calculation the densities
free and bound motors were again initialized with an id
uniform distribution. Figures 3~a!–3~c! show results of a nu-
merical simulation for a motor ensemble with 8% fluctuati
in the potential parameters. The time between succes
plots is 10 ms. As can been seen from Fig. 3, a spatial va
tion of the molecular properties may significantly change
behavior of the system: In the motor ensemble with spatia
inhomogeneous potential parameters locations near high
tential steps lead to a spatial accumulation of motors. L
potential steps, on the other hand, increase the ‘‘one-w
propagation of the motors. The spatially inhomogeneous
tential parameters lead to a space-dependent height
length of the potential step and—via Eq.~2!—to a corre-
sponding variation in the drift currents. With increasing tim
4-5
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regions near high potential steps lead to a spatial accum
tion of motors. Low potential steps, on the other hand,
crease the propagation of the motors. As a consequence
spatially varying height and periodicity of the potential le
to strongly irregular distributions and to the formation
spatiotemporal ‘‘molecular clusters’’ that can be seen
Fig. 3.

C. Excited molecular motors: The influence
of optical excitation

In the following we assume that the illumination with
coherent optical light field changes the intralevel transit
rates between the lower and the upper level of the mot
Depending on the frequency and energy of the light this
fect may occur within a particular energetic interval@simu-

FIG. 3. Snapshot of the spatial motor distribution with spatia
varying molecular properties~fluctuation amplitude of 8%). The
time between successive plots is 10 ms.
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lated with the line shape function in Eq.~A1!#. In our model
the coherent light injection leads~in the area of maximum
coupling at center of the beam! to an increase of a factor o
2 of the ratek12 that induces a spatially and temporally var
ing asymmetry in the rates. The value of the width of the li
function thereby determines the sharpness of the transit
In a first situation we consider the situation of localized e
citation: In this example, the optical excitation induces
switch between the ground and excited states; motors
region ~with a spatial extension of'0.25L) close to the
potential minima of the ground state are transferred to
excited level and vice versa.

Figure 4 shows~in a time window of 60 ms! snapshots of
the spatial distribution of molecular motors within the op
cally excited ensemble. The distribution was initially loca
ized in the center of the medium. The dynamic interact
between the particle ensemble and the light fields propa

FIG. 4. Spatially dependent excitation of a motor ensemble
an adjusted coherent light field.
4-6
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ing in the system leads to complex spatiotemporally vary
light-matter interactions. The spatially dependent optical
citation ~in the example: Gaussian shaped light beam,
jected from the top in the center of the molecular prob!
increases the probability for a transition from the poten
minimum of the ground state to the excited state level. Af
propagating to the next potential minimum of the excit
state the motors are again transferred to the low-energy s
According to the shape of the potentials@see Fig. 1~b!#, the
‘‘relaxed’’ motors may then find themselves in the potent
period next to the one they started from. The selective e
tation consequently transfers motors that have due to the
current accumulated in the potential minimum of the grou
state—via the excited state—to the next potential period.
can be seen in Fig. 4, this finally results in an increa
motor movement. Although the calculations have been p
formed for an artificial system~assuming, e.g., the light
induced increase of a factor of 2 of the transition rates! they
may be applied to any ‘‘real molecular system.’’ The tran
tion rates not only change the distribution of the molecu
motors but—due to their dependence on the mo
densities—also the spatiotemporal distribution of the d
currents. For a visualization of this indirect mutual influen
Fig. 5 displays for the situation of Fig. 4 temporal snapsh
of the transition rate differenceDk i5k i j (r ,t)pj (r ,t)
2k j i (r ,t)pi(r ,t) ~a,b! and drift currents~c,d! of motors in
the ground level, i.e.,i 51,j 52, ~a,c! and excited level, i.e.
i 52,j 51 ~b,d!. All distributions are characterized by se
quences of minima and maxima whose separation co
sponds to the periodicity of the potential. The distributions
the excited levels show maxima where the distributions
the ground levels are minimum and vice versa
corresponding to the definitions of the potentials and to
definitions of drift currents and transition rates. Due to t
spatiotemporally varying motor distributionsDk1 is not
equal to2Dk2. The shape and sign of current distributio
depend on shape and periodicity of the potentials. In part
lar, the rising parts of the potential lead to negative curre
whereas the decrease of the potential determines the reg
of positive drift currents@see also Fig. 1~b!#. Furthermore, a

FIG. 5. Transition rates~a,b! and drift currents~c,d! for the
ground-state motors in the ground level~a,c! and in the excited
level ~b,d!.
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comparison of the transition rate difference@Figs. 5~a,b!# and
the current distributions@Figs. 5~c,d!# demonstrates that th
transition rate difference is high where the currents are
and vice versa. The spatially localized transition rates con
quently bridge the regions of negative currents given by
potential steps. As a result, a significant fraction of the m
lecular motors gets over the potential steps leading to
increased forward propagation of the motors.

As a second example we consider a ‘‘broadband’’ exc
tion, i.e., the parameterG is chosen such that all motor
experience the same excitation—independent of their p
tion with respect to the potential shape. The results are
played in Fig. 6. The homogeneous excitation induce
transfer between the motor states—independent of their
sition relative to potential minima and maxima. As a cons
quence, the transition rates do not ‘‘bridge the gaps’’ defin
by the current minima as efficiently as in the situation of F

FIG. 6. Spatially dependent excitation of a motor ensemble b
broadband coherent light field.
4-7
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4. In combination with the dynamic interaction betwe
bound and free motors this leads to a spatiotemporal bro
ening of the motor distribution. This effect can be furth
analyzed with temporal snapshots of the transition rate
ference and drift currents. These distributions are~for the
ground-state level! displayed in Fig. 7 immediately after th
start of the calculation~a,c! and after 20 ms~b,d!. Immedi-
ately after the start of the simulation@Figs. 7~a,c!# the spatial
distribution ofDk1 @Fig. 7~a!# is—via its dependence on th
motor density—rather uniform and reflects the regular ac
mulation of the motors as defined by the potential and
drift currents@Fig. 7~c!#. With increasing time, however,Dk1
@Fig. 7~b!# and the drift currents@Fig. 7~d!# change into ir-
regular distributions with strong spatial fluctuations. It is th
nonequilibrium excitation and relaxation dynamics that is
sponsible for the spatiotemporal motor distribution shown
Fig. 6.

IV. CONCLUSION

We have discussed the spatiotemporal dynamics of in
mogeneous molecular motor systems. A theoretical mo
has been set up that considers the interaction and couplin
bound and free motors, their selective optical excitation,
spatiotemporally varying molecular properties. It may rep
sent a basis for a fundamental analysis of fluctuations, in
ence of external forces, collective behavior, and control o
mesoscopic level.

Early results on the simulation of spatially inhomog
neous optical molecular motors reveal the dependence o
system behavior on particle distribution, diffusive behavi
and spatiotemporal optical excitation. These results can
give more than a first indication of possible simulations
real molecular systems. However, we are convinced tha
particular the spatial and temporal resolutions of the mo
description as well as the explicit inclusion of spatial flu
tuations in molecular properties~e.g., particle size and spatia
positioning!, noise and interaction strengths between the
dividual components on the spatiotemporal behavior of

FIG. 7. Transition rates~a,b! and drift currents~c,d! for the
ground-state motors immediately after the start of the calcula
~a,c! and after 20 ms~b,d!.
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system may principally allow the investigation and compa
tive analysis of real molecular motor systems.

For future investigations we plan to analyze the influen
of spatial fluctuations in molecular properties~e.g., particle
size and spatial positioning! and interaction strengths be
tween the individual components on the spatiotemporal
havior of the system. This includes, e.g., the application
different noise and statistical functions for the individual p
rameters and the comparative analysis of their influence
the spatiotemporal behavior of the system.

APPENDIX

The numerical integration of the equations of motion~1!
and~3! requires a simultaneous consideration of various ti
and length scales. This can be done on the basis of a fi
difference method. Using the Hopscotch@70# method as a
general scheme, the operators in the system of equation
discretized by the Lax-Wendroff@71# scheme. In the Lax-
Wendroff scheme for finite-difference equations, thexy
plane is divided into a grid with regular mesh sizeDxDy.
Every variable is then represented by its values at the
crete set of pointsxl , ym , where l 50,1, . . . ,Nx and m
50,1, . . . ,Ny . In the following, we will denote the discret
space dependence by subscripts (x is the propagation direc
tion of the motors while the integration in discrete time i
tervalsDt is represented as superscripts, e.g., (pl ,m

n ). After
insertion of the expression for the current@Eq. ~2!# into the
Fokker-Planck equations for the motor molecules@Eqs. ~1!
and ~3!#, the equations of motion can be written in the fo
lowing form:

S ]

]t
5a

]2

]x2
1b

]2

]y2
1c

]

]x
1dD p1e, ~A1!

where the coefficients~e.g., for the bound motors! are given
by a5b5m ikbT, c5m i(“Vi2F), d52G i`2( j Þ ik i j ,
and e5G` i p`1( j Þ ik j i pj , respectively. Discretization o
the operators leads to anexplicit finite-difference equation:

1

Dt
~pl ,m

n112pl ,m
n !5a

1

2Dx
~pl 11,m

n 22pl ,m
n 1pl 21,m

n !

1b
1

2Dy
~pl 11,m

n 22pl ,m
n 1pl 21,m

n !

1c
1

2Dx
~pl 11,m

n 2pl 21,m
n !1dpl ,m

n 1e.

~A2!

In Eq. ~A2!, the ~unknown! value of p with index m at the
time stepn11 is explicitly related to the~known! values of
p at the time stepn. Next to the explicit form, we can relat
the temporal change of the value ofp with index m to the
corresponding values at the time stepn11 leading to the
implicit finite-difference equation:

n

4-8
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1

Dt
~pl ,m

n112pl ,m
n !5a

1

2Dx
~pl 11,m

n11 22pl ,m
n111pl 21,m

n11 !

1b
1

2Dy
~pl 11,m

n11 22pl ,m
n111pl 21,m

n11 !

1c
1

2Dx
~pl 11,m

n11 2pl 21,m
n11 !1dpl ,m

n111e.

~A3!

A suitable combination of explicit and implicit integra
tions allows one to reduce the discretization errors from b
schemes: In the Hopscotch method the spatial grid points
divided into two classes: ‘‘Even points’’ with an even sum
the indicesl 1m amd ‘‘odd points’’ where the suml 1m is
odd. After the initialization of the fields at the start of th
n

.

re

K

T.

tt

02191
h
re

calculation the values of the variables at even points are
tegrated according to the explicit integration scheme~A2! for
one time stepDt. Then, the respective values at the o
points are calculated according to the implicit scheme~A3!.
In the next time-integration step the treatment of the odd
even points is reversed. In this second cycle, the odd po
are first calculated on the basis of the explicit scheme. A
that, the even points are solved following the implicit equ
tions. These four alternating integration cycles are repea
until the end time of the simulation is reached. Followin
this procedure the discretization errors from the explicit a
the implicit scheme resulting from the first-order approxim
tion have opposite sign. They thus cancel as a consequ
of the combination of both schemes. As an overall result
accuracy of the Hopscotch method becomes second ord
time and space.
.
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